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Short Range Order and Concentration 
Fluctuations in Regular and Compound 
Forming Molten Alloys'r 
A. 6. BHATIA and R. N. SLNGHt 
Theoretical Physics Institute, Physics Department. University of Alberta. 
Edmonton, Alberta, Canada T6G 2JI 

(Rrcrioed Augusr 27, 1981) 

First, a statistical mechanical model is dcveloped for compound forming molten alloys with the 
aim that it explains both the concentration dependence of the thermodynamic quantities -- 

free energy of mixing G,, concentration fluctuations S,.,.(O), etc. and the short rangc order 
(SRO) parameter xl  for the nearest neighbour shell obtained from neutron and X-ray scattering. 
The model assumes the existence of appropriate privileged groups or chemical complexes 
A,, 8, (p, Y small integers) and that the energy of an A B ,  A A  or B B  bond depends on whether 
that bond is part of the complex or not. The expression for Gu reduces to the well-known quasi- 
chemical expression for regular alloys when no complexes are formed. 

The theory is next applied to discuss G,, S,,(O). ctc., for three compound forming alloys, 
MgBi, LiPb and AgAI. 

The bond energies once chosen to explain thermodynamic data enable one to  evaluate 
SRO a l .  The calculated a ,  are, in general, good agreement with the available data in both the 
cornpound forming and regular alloys. The theory also provides a natural explanation of change 
of a ,  on melting in such alloys as Cd-Mg. 

1 INTRODUCTION 

It is well known that the concentration fluctuation structure factor S,,(q) is 
intimately related to local order in a binary alloy.' In recent years S,,(q) 
and other structure factors and hence the Cowley-Warren short range order 
(SRO) parameter for the nearest neighbour shell has been estimated from 

t Work supported in part by the Natural Sciences and Engineering Research Council of 

1 On leave of abscnce from Department of Physics, Bhagalpur University, Bhagalpur-812007, 
Canada. 

India. 
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286 A. B. BHATIA A N D  R. N. SINGH 

neutron and X-ray scattering data in a number of molten No 
theoretical discussion of these results on SRO seems to have been given 
to date. The present work attempts to remedy this lack and to interpret the 
SRO results in terms of some theoretical models of the alloys and the thermo- 
dynamic data. There is, of course, considerable literature on SRO in solid 
alloys where it was first introduced;”-” for recent excellent reviews see 
March et aI.,13 F ~ n t a i n e . ’ ~  

First, we recall the definition that an A-B alloy is said to be regularI5 
if (1) A and B atoms are of approximately the same size so that the size 
effects can be neglected and (2) the free energy of mixing GM (and hence also 
the concentration fluctuations S,,(O)) is symmetric about the concentration 
c = 4. For regular alloys, the simplest model which has been used to inter- 
pret S,,(O) is the conformal solution modelI7 or, what is essentially 
equivalent to, the regular solution model in the zeroth approximation.’’ 
These approximations, although they involve the interchange energy w 
(defined precisely later) which describes whether the unlike atom pairs or 
the like atom pairs are energetically preferred as nearest neighbours, actually 
ignore the consequent local ordering in deriving the expressions for Gnr.15”8 
The regular solution model in the next (called the first or the quasi-chemical) 
approximation, howelier as we shall see later, can be applied quite usefully to 
interpret the SRO results in a number of regular alloys. 

The situation for asymmetric alloys, for example, LiPb, AgAl, CuSn, 
etc., is not quite so simple. These alloys (we will be concerned here with 
only those alloys where the size effect is not large enough to be the cause of 
asymmetry in GM, as for example, it is in NaCs alloy19) have the characteristic 
that in the solid state they form compounds at one or more stoichiometric 
compositions. Bhatia and collaborators20-22 developed a phenomeno- 
logical model to explain the variation of Gu,  activities, and S,,(O) with 
concentration, by assuming that if the binary A-B alloy in the solid state 
forms a compound at the composition A,B,  (p, v small integers), then in the 
liquid state the alloy consisted of a mixture of A atoms and B atoms and a 
number of “chemical complexes” A,B, all in chemical equilibrium with 
one another. The model explains successfully the thermodynamic properties 
of a number of compound forming  alloy^'^-^^ and more recently Gray26 has 
elucidated the statistical mechanical foundation of the model. However, a 
discussion of SRO on its basis has not yet been given. 

In this paper we therefore first present a formulation for calculating the 
concentration dependence of the various thermodynamic properties which 
at the same time is capable of yielding information on SRO. We assume the 
existence of “complexes” or privileged group of atoms A,B, as in Refs. 
20-22 (and other references quoted there)-but rather than determining their 
number by the condition of chemical equilibrium-we take a more micro- 
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SHORT RANGE ORDER IN MOLTEN ALLOYS 287 

scopic approach. We characterize the existence of a privileged group by 
assuming that the energy of a given nearest neighbour bond (AB,  BB or A A )  is 
different if it belongs to the group than if it does not. It is then possible to set 
up the grand partition function for the problem which is treated essentially 
by the method proposed by Bethe" and Peierls2' to treat SRO in solid alloys. 
Naturally here because of our lack of knowledge on structural information 
on A,B, a number of additional simplifying assumptions have to be made 
to make the problem tractable; these are best described in Section 2 when 
we have set up the grand partition function. In the absence of the existence 
of the privileged groups, the method just reduces to that of Bethe and yields 
the same results as the quasi-chemical approximation for regular alloys 
referred to above. 

Before proceeding further we need to mention the recent work of Cartier 
et ~ 1 . ~ ~ 9 ~ ~  who have refined Bethe's method for regular alloys, and have3' 
also calculated the conditional probabilities and the ratio of the activities 
of the two components for A , B  (p = 3, v = 1) type alloys by assuming that 
the atoms are located on the sites of a face-centered cubic lattice. 

In Sections 2-4 we describe the formulation and develop the various 
formulae for discussing both the thermodynamic properties and the short 
range order. The interaction parameters occurring in the formula for SRO 
are the same as those occurring in the expressions for G,, &do), etc., and 
hence may be determined from the thermodynamic data. In Section 5 we 
use these formulae to interpret the observed behaviour of G,, activities and 
S,,(O), and SRO for a number of compound forming molten alloys. This 
is followed by a discussion of SRO in regular alloys in Section 6. It is con- 
cluded that the theory is in good overall agreement with experiment and 
provides a useful link bet ween the thermodynamic properties and SRO. 

2 A QUASI-CHEMICAL APPROXIMATION FOR 
COMPOUND FORMING ALLOYS 

2.1 The Method and Assumptions 

As customary in most lattice models of an alloy we assume (1) the atoms are 
located on the sites of a lattice (2) each lattice site has z nearest neighbours 
(3) the interaction is of short range and effective between nearest neighbours 
only and (4) the partition function q,(T) of an A atom associated with the 
inner and translational degrees of freedom is the same wherever A is located 
-and similarly qe(T). The grand partition is then 
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288 A. B. BHATIA A N D  R.  N. SINGH 

where p A  and p B  are the chemical potentials of the two species A and By E 
is the energy of the alloy for a given configuration of NAA atoms and NEB 
atoms due to the nearest neighbour interactions, and the sum is over all con- 
figurations and over all possible values for N A  and N B  subject to N( = N A  + 
N B )  constant, the total number of lattice sites. 

The essential steps of the method to be followed here are now as follows: 
Consider the whole set of lattice sites divided into a small cluster of just a few 
lattice sites and the remainder. Distinguishing the quantities referring to the 
cluster and the remainder by suffixes 1 and 2 respectively, we have 

N A  = N I A  + N 2 A 9  N B  = N I B  + N Z B Y  
E = El + E2 + E12 .  (2.2) 

The energy El refers to configurations on a small set of sites and can be 
handled easily. El, refers to the interaction energy due to atoms in the 
cluster interacting with the surrounding lattice sites and is replaced by an 
average value. (The philosophy being that the interactions within the cluster 
are of primary importance and the other terms in E therefore can be treated 
approximately). Using (2.2) in (2.1), we can write 

where we have abbreviated 

Defining the average value of E12 by 
- 

s 2 e - E ~ 2 / k ~ T  = 1 ~ ~ ~ A ~ S Z B ~ - ( E ~ + E I ~ ) / ~ B T  Y (2.5) 
E2.E12 

we can rewrite (2.3) as 

where 
(2.6) 

- - I  - 
w -  
Y - =, . =2 ,  

zi = 1 { ~ l A ~ ~ l E ~ - ( ~ l + ~ I Z ) / k B T .  (2.7) 
EI 

The term El which is the quantity of interest here is the grand partition 
function of the cluster-the prime on it denoting the fact that in writing it 
we have taken into account the interaction of the cluster with its surrounding. 

So far the procedure is exact. Cartier et aL2' (see also Fowler and Guggen- 
heim31) have shown that El, may be approximated to the form 

trpBL2/kg T x (PlAGB, (2.8) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
0
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



SHORT RANGE ORDER IN MOLTEN ALLOYS 289 

where v, is the number of lattice sites in domain 2 which are the nearest 
neighbours of the A atoms in the cluster. 4A and & are constants which 
as we shall see presently are eliminated from the final result. With (2.8), (2.7) 
becomes 

(2.9) s; = 1 ( , " I A S ~ I B ~ ~ A ~ ; ; B ~ - E I / ~ B T .  

EI 

From the definition of Z;, the average values of A and B atoms in the cluster 
are given by 

or using (2.4) 

(2.1 1)  

c, = (1 - ce) is the average concentration of A atoms in the cluster and 
must obviously be the same as the concentration c of A atoms in the alloy. 
Hence c&A is independent of the size of the cluster. One now uses two dif- 
ferent sizes of cluster to evaluate (2.11) and hence eliminate c $ ~ ,  &. The 
simplest case is, of course, when one takes clusters of just one and two lattice 
sites. We consider here the problem of compound forming alloys in this 
approximation. 

2.2 Expression for 2, for clusters of one and t w o  lattice sites 

When the cluster consists of just one lattice site, there are no AA,  AB or BB 
bonds in the cluster and hence El = 0. Then since the site can be occupied 
by either an A atom or a B atom, and vA or vB in (2.8) is z, the coordination 
number of the lattice, one has 

=!(I) -1 = LKI + SeG, (2.12) 

where we have added the superscript (1) to indicate that this is the expression 
for S; for the cluster of one atom. 

For a cluster of two lattice sites, the cluster can have either two A atoms 
or two B atoms or an A and a B atom. Let qj( i , j  = A or B) denote the energy 
of an ij bond if the i j  bond is a free bond, and let E~~ + denote its energy if 
the i j  bond is one of the bonds in the complex A,, B,. Further let p i j  denote the 
probability that the ij bond in the cluster is part of the complex. Then, for 
example, if the cluster consists of two A atoms, the energy El = (1 - PAA)EAA + 
PAA(eAA + A E A A )  = EAA + PAA A E A A .  The expression for Z'l(2) can then be 
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l j  , i, j = A, B. (2.14) p, ,  = , - ( & i j + P i j A e i j ) / k ~ T  

To assign values of P ,  , consider first the AB pair in the cluster. We assume 
that around each lattice site, say that occupied by A,  there are p + v - 2 
nearest neighbour lattice sites such that if they are occupied by p - 1 A 
atoms and v - 1 B atoms, then these together with the AB pair of the cluster 
form the complex A,B,.  Let Po denote the probability that on these lattice 
sites there are p - 1 A atoms and v - 1 B atoms. Obviously to a first ap- 
proximation Po N c@-'(l - c)Y-'. The various ways (and their probabili- 
ties) in which the AB pair can be part of the complex then are depicted in 

TABLE I 

Table for evaluating P A ,  

Probability of 
Around A atom Around B atom formation of A,B,  

. 
X 

0 

X 
~~ ~ ~ 

*, x, represent, respectively, that complexes are being 
formed or not. 

Table I. The total probability that the AB pair of the cluster belongs to a 
complex A$, is the sum of probabilities in the last column, i.e. 

P A B  = Po(2 - Po)  = cw-l (1 - ~)'- l [2  - ~ " ~ ( 1  - c)"'].  (2.15) 

In exactly the same way one may obtain 

P,, = C"Z(1 - c)"2 - c q 1  - $1, p 2 2, (2.16) 

P*B = c"1 - c y - 2  [2 - cP(l - c>y-*-J, v 2 2. (2.17) 

PA, and P E E  are zero respectively for p < 2 and v -= 2. It will be realised 
that (2.15)-(2.17) represent rather a simplistic approximation to Pii . But 
in the absence of specific assumptions regarding the structure of the com- 
plexes they are the only ones that seem possible. (For the special case p = 3, 
v = 1 the expression (2.15) reduces to that used by Cartier and Barrio1.j') 
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SHORT RANGE ORDER IN MOLTEN ALLOYS 29 I 

For this reason we cannot expect our method to give in general good results 
if the tendency to form complexes is very strong.? We also note that although 
in general all three As, may be required for detailed agreement with ex- 
periment, the crucial one is the energy A E A B  connected with the AB bond. 

If we now use in (2.1 1) the expressions (2.12) and (2.13) for El successively 
we get 

Setting 

and 

(2.19) 

(2.20) 

we immediately obtain from (2.18) a quadratic equation for u, which is, 

CO2 + (1 - 2c)aYp - (1 - c) = 0, (2.21) 
whence 

(2.22) 

where for later convenience we have set 

p = J1 + 4c(l - c)($ - 1) (2.23) 

and where the plus sign has to be taken in front of the square root so that 
-+ 1 if q + 1. 

3 FORMULAE FOR ACTIVITIES AND FREE ENERGY 
OF MIXING 

The connection with thermodynamics is now made by noting firstly that 
from (2.19) and the first equality in (2.18) 

t In terms of the work of Refs. 20, 22, tendency to form complexes is said to be strong if 
ICu(c,)/Nk,Tl 3 3, where cc = p / ( p  + v) is the compound forming concentration. For such 
G M  there are nearly as many complexes in the mixture at a given c as are possible from conserva- 
tion of atoms at that c.  
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292 A. B. BHATIA A N D  R. N. SINGH 

Secondly note that tA and tB are given by (2.4) and that the activity coef- 
ficients y A  and y B  of the two species are defined by 

P A  = &' + kB T In[Cy,], PB = &' kB T h[(1 - C ) ~ B ] ,  (3.2) 
where pL0) and pg) are the chemical potentials of the respective pure species. 
Next remembering that py),  pLo), qA(T), qB(T), and E A A  and EBB in (2.13) are 
independent of concentration, we obtain for the ratio of the two activity 
coefficients y = y A / y B ,  the expression 

In y = z In (r + (z/2kB T)(PAA AEAA - PBB &BE) + s, (3.3) 
where 9 is a constant independent of concentration but may depend on 
temperature and pressure-its determination is discussed presently. For 
later convenience we note that by using (2.22) and (2.23) the first term in 
(3.3) may be written as 

(1 - c ) P  + 2c - 1 
c / ? - 2 c + 1 '  

z In 0 = +z In - (3.4) 

Now let G T  denote the excess free energy of mixing: 

GZ = G ,  - NkBT[c In c + (1 - c) ln(1 - c)], (3.5) 
and abbreviate f ( c )  = G F / N k B  T ,  then from standard thermodynamic 
definitions (see Appendix) 

f'(c) = In y ;  f ' (c)  = dfdc. 
Hence 

f(c) = G T / N k B  T 

= Z [[h 0 + ( 2 k ~ T ) -  '(PAA A&,, - PBB  EBB)] dc + $C. (3.7) 

Equation (3.7) already fulfills the condition thatf(0) = 0, and the constant 
9 in it is to be determined from the requirement on f(c) that f ( c )  = 0 at 
c = 1 also. We may observe that for c = i, In o = 0, and hence if A E A A  = 
A E B B  = 0, then from ( 3 . 3 ) 9  is also equal to the value of In y at c = f. 

Lastly since the long wavelength limit of the concentration fluctuation 
structure factor is given by' 

we may obtain for S,,(O), using (3.3) and (3.6), the expression: 
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SHORT RANGE ORDER i N  MOLTEN ALLOYS 293 

where 

+ (#? - 1 + 2 C ) P L A  A E A A  - (#? + 1 - k)& AEBB). (3.10) 

Here P ~ A  = d P A A / d c ,  etC. 
The above expressions simplify considerably if there is no tendency to 

form chemical complexes, i.e. for a regular mixture. For this case = 0 
for all i , j  = A, B. Now the general expression for q is, from (2.14) and (2.20) 

where for conformity with usage for regular mixtures we have introduced 
the interchange energy o by 

(3.12) 

Hence for a regular mixture q(= eXp[co/Zk~T]) is independent of concentra- 
tion and #?, defined in (2.23), is symmetric about c = i, while In 0 is anti- 
symmetric about c = *. Hence it follows from (3.7) that the constant 4 is 
zero for this case, and one has from (3.3) and (3.7) 

In y = z In 6, (3.13) 

G r / N k B  T = z jIln u dc. (3.14) 

Expression (3.13) with o given by (3.4) is identical with the well-known 
expression for In y for a regular mixture in the quasi-chemical approximation 
(for example, see Ref. 15 -note x of Ref. 15 is 1 - c in our notation). More- 
over-with independent of c-Eq. (3.14) is readily integrable and one 
obtains just the expression for GE given in Ref. 15 (see also Section 6). 

= z(EAB - $EAA - +EBB). 

The expression (3.9) for Scc(0) also simplifies: 

(3.15) 

where the letters R.M. are intended as a reminder for future reference that 
this expression refers to the regular mixture. 

We may note in passing that for the case where AB complexes are formed 
(p = v = l), P A ,  = 1, PAA = PBB = 0. Hence, the mixture (in our approxi- 
mation) behaves exactly like a regular mixture, with co replaced by w f z A E A B .  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
0
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



294 A. B. BHATIA AND R. N. SINGH 

4 EXPRESSON FOR SHORT RANGE ORDER 
PARA M ETE R 

First we deduce the following from the formulation of Section 2: 
Let X A B  denote the probability that one lattice site of a nearest neighbour 

pair is occupied by an A atom and the other by a B atom. Similarly define 
X, ,  and XBB. Then from the definition of the grand partition function 
(2.13) for a cluster of two sites, it follows that 

From (4.1) and (2.20) one has 

Using the normalisation condition 

X A A  + XBB f 2xAB = 1, 

and Eqs. (4.1) and (2.18), we have 
(4.3) 

X A A  = c - X A B ,  XBB = (1 - C )  - X,B. (4.4) 
Substituting (4.4) in (4.2) and solving for X A B ,  one obtains readily using 
(2.23) 

241 - c) 
B + 1  X A B  = (4.5) 

Now the Warren-Cowley"-'2 short range order (SRO) parameter a1 
for the nearest neighbour sites is defined as follows: Given an atom A at the 
lattice site, say 1, let [B /A]  denote the probability that a B atom exists at a 
site 2 which is nearest neighbour to site 1. Then 

So defined, a1 = 0 for a random alloy since [B/A] for this case is just cB,  the 
mean concentration of B atoms. If unlike pairs are preferred over like pairs 
in the alloy, then tll is negative and for the converse case a1 is positive. From 
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SHORT RANGE ORDER IN MOLTEN ALLOYS 295 

simple probabilistic considerations it follows that a1 lies in the range 

The conditional probability [ B / A ]  is related to X A B  simply by XAB = 
c [B/A] ,  since c is the probability that a given site is occupied by an A atom. 
Hence from (4.6) and (4.5) we obtain 

P-1 
p +  1’ 

a, = - 

which is the expression we wished to obtain. Thus if we know the interaction 
parameters w/z and Atij- say from the thermodynamic data-we can 
estimate a1 from Eq. (4.8). 

For the special case of regular mixtures Eq. (4.8) has of course been noted 
either explicitly or implicitly p rev i~us ly .~~-~’  For the sake of the unfamiliar 
reader we may mention that in the usual version of the QC theory,I5 the 
relation equivalent to (4.2) is obtained in terms of the numbers N A A ,  N E B  
and N A B  of AA, BB and AB bonds by a combinatorial method. To see the 
equivalence one has only to note that N,, = +NzXAA, N E B  = +NzXBB, 

Before discussing applications of Eq. (4.8) it is instructive to note that 
there is rather an interesting relation between ScC(O) and a1 for regular 
mixtures (in QCA). Eliminating p between (4.8) and (3.15) one may obtain 

NAB = NzX,,. 

( c ,  = c,c* = 1 - c) 

= 1 + ZO,, + ZU,(Z - l)a1 + ZCI,((Z - l )~ , ) ’  + ...  . (4.10) 

On the other hand, there exists an (exact) sum rule (for mixtures where size 
effects are negligible) between Scc(0) and SRO for different neighbour shells, 
narnelyl3v2 

(4.11) 

where a, is the SRO for the nth neighbour shell and z,, the number of atoms 
in that shell (zl = z). Expansion (4.10) thus illustrates that QCA is necessarily 
an approximation to the true state of affairs. It also shows that the QCA 
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296 A. B. BHATIA AND R. N. SINGH 

expression for a, may be expected in general to be a good approximation if 
lzlcll I G 1 and if z,a, + 0 rapidly with increasing n. It is of course known 
to be poor for temperatures below and near the critical transition tempera- 
ture for solids with long-range Equally we can expect it to be 
unsatisfactory (as similar approximations in all critical phenomena) near the 
critical temperature for phase separation. However for liquid mixtures with 
negative q, expression (4.8) may not be unreasonable even if Jzal I is not much 
less than unity-it being unlikely that there be long-range order even in a 
strongly interacting liquid mixture (except ionic liquids). 

5 COMPARISON WITH EXPERIMENT FOR COMPOUND 
F 0 R M I N G M I XT U R E S 

5.1 Thermodynamic properties 

We apply the formulae of Section 3 to calculate the concentration depend- 
ences of G T ,  etc., for three liquid alloy systems: MgBi, LiPb and AgAl 
for which the complexes may be respectively taken as Mg3Bi,, Li4Pb and 
Ag,Al. The former two show strong tendency to form complexes while AgAl 
has relatively weaker tendency. In the actual calculation the coordination 
number z was fixed in advance and a reasonable choice of the relevant 
interaction parameters (4 for MgBi and 3 each for AgAl and LiPb since 
from (2.17) PBB = 0 if v = 1 in A,&) was made from the experimental 
data on S,,(O) and GM at a couple of concentrations. The constant $occur- 
ring in (3.3) and (3.7) is not an independent constant and was determined, as 
mentioned in Section 3, from the requirement thatf(c = 1) = 0. The choice 
of z and the corresponding interaction parameters o and Acij are tabulated 
for the three systems in Table 11, and G P ,  In y and S,dO) are plotted versus 
c in Figures 1-3. 

For one system namely, MgBi (Figure l), the calculations were made for 
two values of z (8 and 10) to examine the effect of z. We see from the figure 
that the difference in z makes hardly any impact on the run of G F ,  In y and 

TABLE I1 

Interaction energy parameters o and Acij for MgBi (p = 3, v = 2), LiPb (p  = 4, 
v = I )  and AgAl (p = 3, v = 1)  systems 

MgBi 975 8 -6.50 - 1.40 - 2.00 2.27 
MgBi 975 10 -6.50 - 1.40 - 2.00 1.45 
LiPb 932 10 -1.50 - 1.40 + 1.20 
AgAl 1173 12 -0.225 -0.338 +0.015 
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FIGURE I Thermodynamic quantities for Mg-Bi versus concentration (a) G r / N X  ,,T, 
(b) In ( ~ ~ c l Y e i )  and (c) Scc(0). - theory with z = 10, - - ~  theory with z = 8. x , experimen- 
tal data from Ref. 36. 
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-3-0 
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FIGURE 2 Thermodynamic quantities for Li-Pb versus concentration (a) Gg' /Nk ,T ,  (b) 
In(yLi.y,,) and (c) S,,(O). - theory with z = 10. x , experimental data from Ref. 37. 1. ex- 
perimental points for S,&O) from Ref. 2. 
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FIGURE 3 Thermodynamic quantities for AgAl versus concentration (a) G;F/Nk, T ,  
(b) ln(yAg/yA,) and (c) Scc(0). ~ theory with z = 12. (In Figure 3b, ---- theory of Ref. 30.) 
x , experimental points from Ref. 44. 
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SHORT RANGE ORDER IN MOLTEN ALLOYS 30 1 

S,,(O) so long as the interaction parameters are chosen appropriately. It will 
be seen later that this is in contrast with the case of SRO (a1)  which is found 
to be more sensitive to the choice of z (Figure 4a). 

For reasons which will be apparent presently the results shown for LiPb 
and AgAl in Figure 2 and Figure 3 respectively were calculated taking z = 10 
for LiPb and z = 12 for AgAI. 

We see from Figures 1-3 that the computed values of G F  in each case 
are in very good agreement with the experimental data and that the fit for 
In y and S,--(O)t is also reasonable. As mentioned in the Introduction, 
Cartier and Barrio1 computed In y and the conditional probabilities [ B / A ]  
for systems which form A,B complexes. In the terminology of Section 2, they 
take clusters of one and four lattice sites on a face-centered cubic lattice 
(z = 12) which makes their calculations rather more intricate than ours. 
From their computed values of In y for AgAl, given in Figure 3b, we see that 
our calculations seem to be in as good an agreement with experiment as their 
values. 

t Experimental S,,(O) is inferred from the observed activities ai (=  c,y,). i = A,  B, using 
S,,(O) = (1 - c,)/d(ln ai) /dcj .  
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302 A. B. BHATIA A N D  R. N. SINGH 

5.2 Short range order 

With the parameters given in Table 2 the SRO ctl are readily inferred from 
(4.8) using (2.23) and (3.11). These are plotted as a function of c in Figure 
4a-c for the MgBi, LiPb and AgAl systems. 

We note first from Figure 4 that a1 is negative for each case, indicating 
that unlike atom pairs are preferred over the like atom pairs as nearest 
neighbours. Secondly we observe that the peak value of I a1 1 is significantly 
larger for MgBi and LiPb than for AgAl. This is to be expected since the 
former two are much more strongly interacting systems than AgAl (peak 
values of I G r / N k ,  TI being respectively, 2.69, 2.86 and 0.62). Apart from 
the peak values, the detailed concentration dependence of al also depends on 
the interaction parameters and may vary markedly from one alloy to another. 
In particular, we note that al - c curves are quite asymmetric (about 
c = $) for LiPb and AgAl but approximately symmetric for MgBi-even 
though G F  and S,,(O) are asymmetric for all the three alloys. In Figure 4c 
for AgAl, we have also given for comparison the values of tll obtained from 
the conditional probability [B /A]  calculated in Ref. 30. 

Coming to the experimental values of ctl we first recall that for a binary 
alloy in which the size effects are negligible (or more precisely for which the 
N-C structure factor S,,(q) = 0), the Fourier transform of S,,(q) enables 

Bi 
0 .4 .6 

FIGURE 4 Short range order parameter ct, versus concentration: (a) Mg-Bi, (b) Li -Pb, 
(c) Ag-Al. -, ~~~~ theory with z values as explained in Figures 1b3. In Figures 4a, b, x ex- 
perimental from Refs. 5 and 2 respectively. 1 in Figure 4b due to Ref. 38, and - - -  in Figure 4c 
due to Ref. 30 as  explained in the text. 
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FIGURE 4b 

FIGURE 4c 
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304 A. B. BHATIA AND R. N. SINGH 

one to evaluate za, (see Ruppersberg and Egger'). Further z may be evaluated 
from the Fourier transform of S,,(q). The actual determination of a, is 
quite a long and fine artzp9 and the results are available only for few cases. 

We note that in actual practice z (which may depend on concentration 
also) has not always deen determined from S"(q) as indicated above. Since 
S,&) yields zal, the inferred value of a, depends on the choice of z. It may 
be seen from the theoretical expression for a,-see Figure 4a and dis- 
cussion in Section 4.1-that the theoretical a1 (for a given set of thermody- 
namic data)? also depends significantly on the choice of z. In making the 
comparison between the experimental and theoretical a l ,  it is therefore 
advisable to take the same value of z for the two evaluations of al. 

Boos and SteebS have determined a, for MgBi system at cMg = 0.7. At 
this concentration they give z = 7.8. Their value a, = -0.44 compares 
well with our theoretical value a, = -0.40 for z = 8. (Note from (4.7) that 
a, cannot be less than - 3/7 = -0.43 at c = 0.7). For LiPb system Ruppers- 
berg and Egger' give at cLi = 0.8, the value a,  = -0.25 and z = 10. Our 
calculated value for this case is a, = -0.22. It is of interest to mention that 
Bletry3* has recently given a formulation for calculating the structure 
factors where a, acts as a parameter. He infers that the experimental S"(q) 
and S,&) for LiPb at cLi = 0.5 imply that a1 = -0.32 k 0.05. This may be 
compared to our value in Figure 4b of a1 = -0.29 at this concentration. 

6 SRO IN REGULAR ALLOYS 

6.1 General remarks 

We first record for convenience the well known QCA  expression^'^'^ 
for the activity coefficients ya and y B  and C F  for the regular alloys. As already 
mentioned they may be deduced also as a special case of the formulae of 
Section 3 and are given by (c = cA) :  

Gzc/NkBT = c In y A  + (1 - c) 1n yB. (6.2) 
The expression for S,,(O) is given by (3.15) and of course a1 again by (4.8). 
In these expressions f l  is still given by (2.23) but q now in (2.23) is just q = 
exp[co/zk, T ]  and is independent of the concentration. 

t It is instructive to mention that for the simple case of a regular mixture and o/zk ,  T @ 1, 
2 4  1 - c) (o /zk ,  T).Thus for a given the expression for G',"' 1 Nc( 1 - c)w, while from (4.8) a1 

C F ,  2, :x z - '  for this Case. 
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Equations (6.1) and (6.2) for y’s and G T  have been extensively discussed 
in the literature. For want of space we shall therefore not make comparison 
of these expressions with experimental data for individual cases, but confine 
our discussion to a, and to a lesser extent to Scc(0). Equations (6.1) and (6.2) 
will however be used, of course, to determine as appropriate the parameter 
q or the interchange energy w from the experimental data. In this connection 
we note that at c = 4, p = q and 

GT/NkBT = )Z In ~ 

q +  1’ 
As the behaviour of S,,(O) on the basis of QCA does not seem to have been 

reported previously, it is of interest to examine it briefly. Figure 5 depicts 
the variation of S,,(O) with c evaluated from (3.15) for different values of 
w/k, T .  The curves are drawn for z = 8. We observe that when w is negative 
S,,(O) is less than its ideal (w = 0) value: S$(O) = c(l - c), while it is 
greater when w > 0. For small negative values of w/k, T ,  S,,(O) has just one 
peak, namely at c = 9. However, as w/k,T becomes more negative [for 
w/k, T < -2.83 Scc(0) has a minimum at c = with a peak on either side; 
the minimum of S,,(O) + 0 as w/k,T + - co. It is to be noted that this 
feature is in striking contrast with the behaviour of S,,(O) in the zeroth or 
conformal solution approximation’* where S,,(O) has just one extremum 
value for all w/k, T ,  namely a maximum at c = 3. 

When w is positive there is tendency for segregation of two types of atoms 
and the system remains in one phase at all concentrations only above the 
critical temperature T,  given by” 

w Z 
~ = zln- 
k B  T, z - 2’ (6.4) 

As T + T,  from above it will be seen from (3.15) that S,,(O) + 00 at c = 3. 
The variation of SRO ( a l )  with c for different w/k, T is shown in Figure 6. 

As expected, ctl is negative for negative values of w. We may draw attention 
to the change in the nature of the curves as o/k ,T  becomes increasingly 
negative. This can be understood from the dilute limit expressions for a, given 
in the Appendix. Also, as may be verified from (4.Q for w/k,  T + - 00, ctl 
tends to its minimal value given by (4.7), namely a, = -(1 - c)/c for 
c > 4 and al = - c/(l - c) for c < ). 

For positive values of w/k,T, a, is positive. A point to note here is that 
according to the QCA expressions (4.8) or (4.9) the largest positive value that 
a, can have is a, = l/(z - l), which occurs at c = 4 and T = T,. For any 
reasonable z this is considerably lower than the maximum allowed value of 
a l ,  namely unity, according to (4.7). We may recall from our discussion of 
Section 4 that we expect the QCA expression for a, to be a good approxima- 
tion only for T 9 T,. 
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C 
FIGURE 5 Concentration fluctuations S,,(O) versus concentration calculated for regular 
alloys for different values of the interchange energy w k,T and z = 8. The value w/k,T = 
-2.23 corresponds to Cd-Mg system and x denote experimental S,,(O) inferred from the 
activity data of Ref. 36. 

6.2 Individual systems 

Table 111 gives the experimental and calculated values of ctl for five alloy 
systems. In the first four alloys unlike atoms are preferred over the like 
atoms as nearest neighbours (m and ctl negative) and in the fifth, LiNa, the 
reverse is the case. For each alloy the coordination number z as quoted in 
the reference measuring ctl is also given. Using this coordination number o 
was deduced from the available thermodynamic data on G F  or y and then 
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FIGURE 6 Short range order C I ~  versus concentration calculated for regular alloys for dif- 
ferent values of q k ,  T and z = 8. Dashed curves refer to scale on the right. 

cxl calculated at the temperature of observation of a l .  For want of data w 
was assumed to be independent of temperature. 

We observe that for the first system listed in Table 111, namely Cd25Mg,5, 
the measured value (Boos and Steeb6) of a, agrees well with the theoretical 
value-w was determined from the e ~ p e r i m e n t a l ~ ~  G T .  As an illustrative 
example, the same value of w was used to calculate S,&O) at T = 923°K 
and is shown in Figure 5 together with the S,,(O) inferred from the activity 
data.36 For Li,,Mg,o, we see from the Table that the experimental value of 
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TABLE I11 
Short range order parameter cil for a number of regular molten alloys 

System T "K z al(exp)t a ,  (theory) co/klk,"K$ 

Cd,,Mg,, 823 7 -0.13 -0.12 - 2057" 
Li,,Mg,, XX7 10 -0.035 - 0.044 - 9 4 9  
Li,,Mgjo 887 10 -0.035 - 0.094 -2091" 
Li,,Ag2, 600 10 -0.15 -0.21 - 3803' 
Ag,oMg,, 1093 10 -0.37 - 0.22 - 4498" 
Li,,Na,, 590 10 +0.5 E +0.1 - + 1316t 

t For references see text. 
$ Inferred from thermodynamic data from: 

Ref. 36. Ref. 39. Ref. 40 

a,  (Ruppersberg et agrees well with the calculated value when o is 
inferred from the recent data on GZC by Saboungi and Blander.39 The older 
data on G F  given in Ref. 36 differs significantly from that of Ref. 39, and as 
seen from Table I11 gives a substantially different a,. 

For LiAg system o was determined from the activity data of Becker et aL4' 
The calculated value al( = -0.21) for Li,,Ag,, is about 40% higher than the 
corresponding experimental value (Reiter et aL3) of ctl = -0.15. These values 
may be compared with the value 01, = -0.24 -t 0.05 inferred by B 1 e t r ~ ~ ~ -  
already referred to-from his work on structure factors. 

For the AgMg system w was determined from the heat of mixing (HM) 
data36 using the QCA expression (for w independent of T )  

(6.5) 
Bearing in mind the possible uncertainties in the H, data the agreement 
between the calculated and experimental (Steeb and H e ~ e l ) ~ '  values of a1 
is not unreasonable. 

The last system in the table, namely LiNa, shows tendency for segregation 
and has been included primarily to illustrate that, as already discussed, the 
QCA expression for a1 cannot be expected to give reasonable agreement with 
experiment near the critical temperature for phase transition. (In the absence 
of thermodynamic data, o was estimated from (6.4) using Tc = 58O'X-  
ignoring the asymmetry exhibited43 by the Li-Na system.) We note that the 
maximum possible value of a, in QCA for alloys showing segregation 
tendency is just l/(z - 1) or 0.11 if z = 10-while the experimental value is 
0.5. 

H, = 2041 + p)-'c(l - c). 

6.3 

Boos and Steeb6 have found in the Cdz5Mg,, alloy an interesting fact that 
the local order actually increases (ctl becomes more negative) on melting. 

Change of u, on melting 
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- .2Q t 
FIGURE 7 Temperature variation of a1 across the melting for Cd,,Mg,,. - theory; 
x experimenta\.6 

Their results are plotted as a function of temperature in Figure 7. This 
behaviour has a ready explanation on the basis of our formulae and the 
fact that in the solid phase the coordination number6 z = 12, while in the 
liquid phase z = 7. Then from the data36 on G F  in the solid phase we find 
wJk, = - 2134"K, compared to q / k ,  = - 2057°K in the liquid phase given 
in Table 111. Although w, 2: w I ,  the lower coordination number in the liquid 
phase implies from (4.8) that ctl would become more negative on melting. 
From the theoretical values of cxl given in Figure 7 it is apparent that our 
formulae explain satisfactorily the change in cxl on melting. The actual 
numerical values of ctl in the solid phase seem to indicate a somewhat lower 
numerical value of w, than deduced above from the existing data on GZ. 

7 CONCLUDING REMARKS 

In this paper we have developed a model which provides a quantitative 
link between the various thermodynamic properties ( G M ,  S,,(O), etc.), and 
the short range order parameter cxl in the compound forming and regular 
molten alloys. Once the interaction parameters of the theory have been set 
from the thermodynamic data at a few concentrations, one can determine 
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GM, Scc(0), etc., as well as cl1 over the whole concentration range. A know- 
ledge of al(c) is useful in understanding many physical properties-for 
example calculation of structure f a ~ t o r s . ~ ~ . ~ ~  Since a1 from scattering 
experiments is at present available only sparsely, the ready link of a, with 
the thermodynamic properties in our formalism is of added interest. 
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Appendix 

We give here the dilute limit (c -4 1 and 1 - c 4 1) expressions for the 
activity coefficients y A  and y B  (and for y = y A / y B )  which are helpful in fixing 
the interaction parameters and in studying the dilute limit behaviour of 
Scc(0) and other structure 

By definition, y A  and y B  are given by 

, kBT lny, = (aGT) - . (A.l)  
a N B  T , P , N *  

Remembering the abbreviationf(c) = G r / N k B T  and that N = N A  + N ,  
and c = N A / N ,  one has from (A. l )  

In y A  = f ( c )  + (1 - c)f’(c),  

In y B  = f ( c )  - cf‘(c). 

( A 4  

(A.3) 

Hence In y = f ’ (c )  which is the relation (3.6) used in the text. 
Now if we write, for the limit c 4 1, 

In y = a, + alc + O(c2), 

In Y A  = a0 + a , ~  + O(C’), 

In ye = -+ulc2 + O(c3). 

(A.4) 

one obtains using (A.2) and (A.3) 

(‘4.5) 

( A 4  

(AS) shows that the coefficient al in (A.4) is just the well-known Wagner 
interaction parameter a, = [(d In Y A / d C ) T , p ] e + O .  In terms of ai ,  the expres- 
sion for Scc(0), using (3.5) and (3.8). is 

S,,(O) = c(1 - c)  - a1c2 + O(c3) (A.7) 

To determine a. and al from the general expression (3.3) for y ,  let y 
denote the exponent in the expression (3.1 1) for q’, namely 

(A.8) 
{ ~ ( w / z )  + 2 P A B  AEAH - P A ,  A E A A  - P B B  A c B d  

k ,  T Y =  
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and let y(0) and y’(0) denote respectively the value of y and dy/dc at c = 0 
with similar meanings for PAB(0), PAB(0), etc. Then using (2.23) the expansion 
of B, to order c2, is 

f l  = 1 + 2c(eY(’) - 1 ) + 2c2[1 - eY(O) + y’(0)]eY(o) + . (-4.9) 

Next using (A.9) in (3.4) and (3.3) one obtains for the coefficients a. and a, 
in the expansion (A.4) for In y, (c 4 l), the expressions 

For the limit c + 1, the expansion for p is obtained from (A.9) by replacing 
c -+ 1 - c, y(0) + y(l), the value of y at c = 1, and y’(0) + -y’(l). The 
expansion for In y then is, (1 - c) g 1, 

For (p ,  v) = (3, l), (4, 1) and (3,2)-corresponding to the three compound 
forming alloys considered in the text-one has on using (2.15-17) in (A.lO) 

(A.13) w 
In y = 9 + --, (c = 0). 

kB T 
For c = 1, one has for (p, v )  = (3, 1) and (4, 1) 

and for (p ,  v) = (3,2) 
w 

k B  T’ 
I n y  =9- - 

(A.14) 

(A.15) 

These expressions provided a check on the numerical results reported in 
Section 5. 

Finally the dilute limit expressions for the SRO ctl are also of interest. 
Using (A.9) in (4.8), one has, for c < 1, 

El  = c(eY(O) - 1) + cz[y’(0)ey(o) - (eY(O) - 1)(2eYf0) - l)] + . . . . (A.16) 
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The expansion for a1 for (1 - c) -4 1 may be obtained from (A.16) by re- 
placing in it c -, 1 - c, y(0) + y( 1) and y’(0) + - y‘( 1). 

For the case of a regular mixture, Aeij = 0 and y(0) in (A.16) is just y(0) = 
[2o/zk ,T]  while y’(0) = 0. Hence ( d 2 ~ , / d c 2 ) , = ,  changes sign at a value 
of o given by (m/zk,T) = -+ In 2; this is reflected in the curvature of the 
tll - c curves of Figure 6 as discussed in Section 6. 
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